20*2^2x+1=500

Simple and best practice solution for 20*2^2x+1=500 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 20*2^2x+1=500 equation:



20*2^2x+1=500
We move all terms to the left:
20*2^2x+1-(500)=0
We add all the numbers together, and all the variables
20*2^2x-499=0
Wy multiply elements
40x^2-499=0
a = 40; b = 0; c = -499;
Δ = b2-4ac
Δ = 02-4·40·(-499)
Δ = 79840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{79840}=\sqrt{16*4990}=\sqrt{16}*\sqrt{4990}=4\sqrt{4990}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{4990}}{2*40}=\frac{0-4\sqrt{4990}}{80} =-\frac{4\sqrt{4990}}{80} =-\frac{\sqrt{4990}}{20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{4990}}{2*40}=\frac{0+4\sqrt{4990}}{80} =\frac{4\sqrt{4990}}{80} =\frac{\sqrt{4990}}{20} $

See similar equations:

| 11y-40=88y-40 | | 8-(4+x)=0 | | 2/5k+1/3=4 | | 2x-10=8x+40 | | 31+3y-10=10y-14-2y | | |z-12|=24 | | 4x-1=x-1-5x | | -8(v+3)+4v+7=8v+7 | | 16y+5-3=-2y-15 | | a(2)+2(2a)=360 | | -8z•5=-80 | | 3x+6=-2x-2 | | 6v-5-3=-8-6v | | 0.25x+0.2(x-4)=0.01(5x-3) | | 16y+5-3=2y-15 | | 6x+6=-2x-2 | | 7z-(-11)=39 | | 9x1=8 | | 2+4x-8=-6x+10+2x | | 2+4x-8=-6x | | 6x-9-3x=21+2x-12 | | 8(24)-61=3y+1 | | 4/5d+1=4/5d+91 | | -4w+5=16 | | 5x-5+2x-15=2x+15 | | -5y+5=-18 | | (1-x)/2=7 | | 2x+2(3x+3)=24 | | 10x-(-2x+12)=52 | | 1-x/2=7•2 | | 7^2+28y=0 | | 13x-33=7- |

Equations solver categories